Answer:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O
2NO(g) + O₂(g) → 2 NO₂
Explanation:
First of all, we need to consider the reaction for production of ammonia. In this reaction we have as reactants, nitrogen and hydroge.
3H₂ (g) + N₂(g) → 2NH₃ (g)
Afterwards, ammonia reacts to oxygen, to produce NO and H₂O
The equation for the process will be:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O
Then, we take the nitric oxide to make it react, to produce NO₂, in order to produce nitric acid, for the final reaction:
2NO(g) + O₂(g) → 2 NO₂
3NO₂(g) + H₂O(g) → 2 HNO₃ (g) + NO(g)
1 . Each color has a different wavelength allowing the eye to see it.2 . The shirt reflects the blue wavelengths.
3 . Charcoal absorbs all wavelengths of light that fall on it4 . Red
5 . Purple 6 . Yellow7 . It contains all of the wavelengths of the visible light spectrum.
Bromine has the following electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5. categorize the electrons in each. Answer for video: The video player is loaded.
On the periodic chart, row 5, column 7, is where you can find a chemical element that was identified in 1811. It has a proton count of 53 and an atomic mass of 126.9. Iodine's atom, then, contains 53 electrons in the following configuration: 1s2, 2s2, 2p6, 3s2, 3d10, 4p6, 5s2, 4d10, 5p5 (Kr 4d10 5s2 5p5). Cu Z = 29 has an electrical arrangement of 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Copper (Co) has the following electron configuration: 1s2 2s2 2p6 3s3 3p6 4s2 3d7. If a chemist were to refer to Copper by its subshell, they would abbreviate this notation to "3d7."
To learn more about electrons please click on below link
brainly.com/question/1255220
#SPJ4
There are 4 significant figures! Start counting after the first non-zero digit :)
Hope this helps.