Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.
Answer:
NH3 has greater water solubility due to intermoleculate interactions
Explanation:
Hi:
If we represent the structures of NH3 and SbH3 we can see that they are similar to the naked eye, this is because N and Sb belong to the same group of the periodic table (group 15).
However, the electronegativity of N is greater than that of Sb. The NH3 molecule is polar and can form an intermolecular interaction called hydrogen bridge with water.
Sb is less electronegative than N. The SBH3 molecule forms an intermolecular interaction with water called dipole-induced dipole.
The zone with positive charge density of the water molecule (hydrogens) is oriented towards the zone with positive charge density of SBH3 (the pair of electrons not shared)
Stronger intermolecular junctions allow greater solubility of NH3 molecules.
Successes in your homework
The correct answer is d) chrima
Answer:
4HCl(g) + O₂(g) → 2Cl₂(g) + 2H₂O(g)
Explanation:
In order to find the equation we should state:
The reactants → Hydrogen chloride (HCl) and oxygen (O₂)
The products → Chlorine gas (Cl₂) and water gas (H₂O)
The balanced equation is:
4HCl + O₂ → 2Cl₂ + 2H₂O
It is a redox reaction, where the oxygen reduces to make water, and the chloride is oxidized to produce elemental chlorine.