The alpha particle is emitted at 4235 m/s
Explanation:
We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:
where:
is the mass of the original nucleus
is the initial velocity of the nucleus
is the mass of the alpha particle
is the final velocity of the alpha particle
is the mass of the daughter nucleus
is the final velocity of the nucleus
Solving for
, we find the final velocity of the alpha particle:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
<span> Using conservation of energy
Potential Energy (Before) = Kinetic Energy (After)
mgh = 0.5mv^2
divide both sides by m
gh = 0.5v^2
h = (0.5V^2)/g
h = (0.5*2.2^2)/9.81
h = 0.25m
</span>
Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force. We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.
If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as 588 newtons or as
132.3 pounds. That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.
If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is
y(t) = y₀ + M sin(2π t/15) .
The vertical speed of the deck is y'(t) = M (2π/15) cos(2π t/15)
and its vertical acceleration is y''(t) = - (2πM/15) (2π/15) sin(2π t/15)
= - (4 π² M / 15²) sin(2π t/15)
= - 0.1755 M sin(2π t/15) .
There's the important number ... the 0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.
The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of 0.1755 x amplitude).
At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of 65kg, when in reality it's only 60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.
Now I'm going to wave my hands in the air a bit:
Apparent weight = (apparent mass) x (real acceleration of gravity)
(Apparent mass) = (65/60) = 1.08333 x real mass.
Apparent 'gravity' = 1.08333 x real acceleration of gravity.
The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.
0.08333 G = 0.1755 M
The 'M' is what we need to find.
Divide each side by 0.1755 : M = (0.08333 / 0.1755) G
'G' = 9.0 m/s²
M = (0.08333 / 0.1755) (9.8) = 4.65 meters .
That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .
Answer:
The length of rod A will be <u>greater than </u>the length of rod B
Explanation:
We, know that the formula for final length in linear thermal expansion of a rod is:
L' = L(1 + ∝ΔT)
where,
L' = Final Length
L = Initial Length
∝ = Co-efficient of linear expansion
ΔT = Change in temperature
Since, the rods here have same original length and the temperature difference is same as well. Therefore, the final length will only depend upon the coefficient of linear expansion.
For Rod A:
∝₁ = 12 x 10⁻⁶ °C⁻¹
For Rod B:
∝₂ = β₂/3
where,
β₂ = Coefficient of volumetric expansion for rod B = 24 x 10⁻⁶ °C⁻¹
Therefore,
∝₂ = 24 x 10⁻⁶ °C⁻¹/3
∝₂ = 8 x 10⁻⁶ °C⁻¹
Since,
∝₁ > ∝₂
Therefore,
L₁ > L₂
So, the length of rod A will be <u>greater than </u>the length of rod B