1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
2 years ago
13

Please guys help me plz for god sake plz plz guys plz plz plz i will mark u as a brainlist plz​

Physics
1 answer:
victus00 [196]2 years ago
8 0

Answer:

Explanation:

The complete sequence of motions and activities required to complete one work cycle.

You might be interested in
15 points! An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction of its velocity, and the remai
alexandr1967 [171]

The alpha particle is emitted at 4235 m/s

Explanation:

We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:

p_i = p_f\\ Mu=m_1 v_1 + m_2 v_2 =  

where:  

M =222u is the mass of the original nucleus

v=420 m/s is the initial velocity of the nucleus

m_1 = 4 u is the mass of the alpha particle

v_1 is the final velocity of the alpha particle

m_2 = 222u-4u = 218 u is the mass of the daughter nucleus

v_2 = 350 m/s is the final velocity of the nucleus

Solving for v_1, we  find the final velocity of the alpha particle:

v_1 = \frac{Mu-m_2 v_2}{m_1}=\frac{(222)(420)-(218)(350)}{4}=4235 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
2 years ago
A child and sled with a combined mass of 50.0 kg slide down a frictionless slope. if the sled starts from rest and has a speed o
Furkat [3]
            <span> Using conservation of energy

Potential Energy (Before) = Kinetic Energy (After)

mgh = 0.5mv^2

divide both sides by m

gh = 0.5v^2

h = (0.5V^2)/g

h = (0.5*2.2^2)/9.81

h = 0.25m

</span>
4 0
2 years ago
Read 2 more answers
If you stood on a planet with four times the mass of Earth, and twice Earth's radius, how much would you weigh?
nikdorinn [45]

Answer:

1/4 times your earth's weight

Explanation:

assuming the Mass of earth = M

Radius of earth = R

∴ the mass of the planet= 4M

the radius of the planet = 4R

gravitational force of earth is given as = \frac{GM}{R^{2} }

where G is the gravitational constant

Gravitational force of the planet = \frac{G4M}{(4R)^{2} }

                                                       =\frac{G4M}{16R^{2} }

                                                       =\frac{GM}{4R^{2} }

recall, gravitational force of earth is given as = \frac{GM}{R^{2} }

∴Gravitational force of planet = 1/4 times the gravitational force of the earth

you would weigh 1/4 times your earth's weight

3 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
2 years ago
Two metallic rods A and B of different materials have same length. The linear expansivity of A is 12×10–6 oC–1and cubical expans
uysha [10]

Answer:

The length of rod A will be <u>greater than </u>the length of rod B

Explanation:

We, know that the formula for final length in linear thermal expansion of a rod is:

L' = L(1 + ∝ΔT)

where,

L' = Final Length

L = Initial Length

∝ = Co-efficient of linear expansion

ΔT = Change in temperature

Since, the rods here have same original length and the temperature difference is same as well. Therefore, the final length will only depend upon the coefficient of linear expansion.

For Rod A:

∝₁ = 12 x 10⁻⁶ °C⁻¹

For Rod B:

∝₂ = β₂/3

where,

β₂ = Coefficient of volumetric expansion for rod B = 24 x 10⁻⁶ °C⁻¹

Therefore,

∝₂ = 24 x 10⁻⁶ °C⁻¹/3

∝₂ = 8 x 10⁻⁶ °C⁻¹

Since,

∝₁ > ∝₂

Therefore,

L₁ > L₂

So, the length of rod A will be <u>greater than </u>the length of rod B

6 0
3 years ago
Other questions:
  • Do roses have prokaryotic cells
    12·1 answer
  • Identify which type of source is being described.
    10·2 answers
  • Particle A of charge 2.79 10-4 C is at the origin, particle B of charge -5.64 10-4 C is at (4.00 m, 0), and particle C of charge
    13·1 answer
  • Time Warner Cable's leadership development program that spanned over 30 days and included weekly videos, practice exercises, and
    9·1 answer
  • A tank 20 m deep and 7m wide is layered with 8m of oil,6m of water and 5m of mercury.complete total hydroatatic force.(density o
    6·1 answer
  • List three examples of a skillets (cooking utensil) basic use.
    11·2 answers
  • Deduced hydrochloric acid is a strong acid ​
    7·1 answer
  • Recommend An architect wants to design a conference room that
    11·1 answer
  • A gyroscope is a wheel or disk that spins rapidly around two or more axes. Question options: True False
    8·2 answers
  • A radar receiver indicates that a pulse return as an echo in 20 μs after it was sent. How far away is the reflecting object? (c
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!