Its b i literally have had this exact question
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength

by the formula

where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by

where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.
Answer:
Elements in Group 14 could lose four, or gain four electrons to achieve a noble gas structure. In fact, if they are going to form ions, Group 14 elements form positive ions. Carbon and silicon form covalent bonds. Carbon's millions of organic compounds are all based on shared electrons in covalent bonds.
Explanation:
Answer:
Explanation:
We shall apply law of conservation of momentum to know velocity after collision . Let it be v .
total momentum before collision = total momentum after collision
15 x 1.5 - 12 x .75 = ( 15 + 12 ) v
v = .5 m /s
kinetic energy before collision
1/2 x 15 x 1.5² + 1/2 x 12 x .75²
= 16.875 + 3.375
= 20.25 J
kinetic energy after collision
= 1/2 x ( 15 + 12 ) x .5²
= 3.375 J
Loss of energy = 16.875 J
This energy appear as heat and sound energy that is produced during collision .