I need more to answer this
I think the correct answer would be horizontal exchanges or market. It is a type of market wherein a service or a product would meet a need of a very wide range of consumers from different sectors. Hope this answers the question. Have a nice day.
<span>First question: The type of energy involved when a river moves sediment and erodes its banks is: option d. Kinetic energy. Kinetic energy is the energy associated with motion. A body (in this case the water) that moves has an energy associated with its motion that is proportional to the speed (exactly to the square of the speed). When the water collides with the banks it is the kinetic energy of the river that erodes it Second question: the answer is the option d. As gravity pulls water down a slope potential energy changes to knietic energy. This is the, water loses altitude and gains velocity. The potential energy. which is proportional to the height, decreases and the kinetic energy, which is proportional to the square of the speed, increases.</span>
Everything starts from spectroscopy. Astronomers only have concentrated information at wavelengths that are emitted from the stars. What they do with this information is to obtain the frequency range of the stars and through spectroscopes they are responsible for dividing the radiation beams and determining the coincidence with the emission of those same waves, of chemical elements. From these observation techniques it is possible to obtain the composition and according to the color, obtaining characteristics such as temperature. The spectrum of stars consists of dark and bright lines called Fraunhofer lines. This spectrum is compared to the spectrum of different elements to find the composition of the stars. This is possible because the elements emit or absorb only specific wavelengths.
Answer:
Oscillation whose amplitude reduce with time are called damped oscillation. This happen because of the friction. In oscillation if its amplitude doesn't change with time then they are called Undamped oscillation