Period = (1/frequency) .
If frequency is 100 per second, then
Period = (1) / (100 per second) = 0.01 second .
To solve this problem we will apply the linear motion kinematic equations. On these equations we will define the speed as the distance traveled in a space of time, and that speed will be in charge of indicating the reaction rate of the individual. In turn, using the ratio of speed, position and acceleration, we will clear the position and determine the distance necessary for braking.
The relation to express the velocity in terms of position for constant acceleration is as follows

Here,
u = Initial velocity
v= Final velocity
a = Acceleration
= Initial position
s = Final position
PART 1) Calculate the displacement within the reaction time



In this case we can calculate the shortest stopping distance


PART 2)
PART 1) Calculate the displacement within the reaction time



In this case we can calculate the shortest stopping distance


While a person without alcohol would cost 517ft to slow down, under alcoholic substances that distance would be 616ft
<span>B). it will decrease.
But, you should keep the temperature constant, 'cause according to Boyle's law, pressure of the ideal gases is indirectly proportional to it's volume but at constant temperature. So, don't confuse in that.
Hope this helps!
</span>
Because the kinetic energy start to decrease, for example if we put sugar in a high temperature tea and we shake it what will happen to the sugar will the kinetic energy increase or decrease, it will probably decrease, just like us the people when we enter a cold room and we have a hot temp.