E S *
The "E" represents Earth, "S" represent Sun, and the "*" represents the nearest star(which is Proxima Centauri).
The main thing to worry about here is units, so ill label everything out.
D'e,s'(Distance between earth and sun) = .<span>00001581 light years
D'e,*'(Distance between earth and Proxima) = </span><span>4.243 light years
Now this is where it gets fun, we need to put all the light years into centimeters.(theres alot)
In one light year, there are </span>9.461 * 10^17 centimeters.(the * in this case means multiplication) or 946,100,000,000,000,000 centimeters.
To convert we multiply the light years we found by the big number.
D'e,s'(Distance between earth and sun) = 1.496 * 10^13 centimeters<span>
D'e,*'(Distance between earth and Proxima) = </span><span>4.014 * 10^18 centimeters
</span>
Now we scale things down, we treat 1.496 * 10^13 centimeters as a SINGLE centimeter, because that's the distance between the earth and the sun. So all we have to do is divide (4.014 * 10^18 ) by (<span>1.496 * 10^13 ).
Why? because that how proportions work.
As a result, you get a mere 268335.7 centimeters.
To put that into perspective, that's only about 1.7 miles
A lot of my numbers came from google, so they are estimations and are not perfect, but its hard to be on really large scales.</span>
Answer:
B object at rest
Explanation:
object at rest means it wouldn't be moving, like a parked car or sleeping person therefore, B is the correct answer
Answer:
This question is incomplete
Explanation:
This question is incomplete because of the absence of options. However, one material that is good candidate for conducting electricity without reacting with other materials is metallic vanadium dioxide. This is because of the inability of this electrical conductor to conduct heat (an unusual property for all other electrical conductors) and thus makes it difficult for it to react with other materials (since an increase in temperature increases possibility of a reaction).
Compression is above the equilibrium and rarefaction is below