"Light travels at a speed of 299,792 kilometers per second; 186,287 miles per second. It takes 499.0 seconds for light to travel from the Sun to the Earth, a distance called 1 Astronomical Unit."
In the electric field, the like charges repel each other, and the unlike charges attract each other, whereas in a magnetic field the like poles repel each other and the unlike poles attract each other.
When focused light is projected onto the retina, it stimulates the rods and cones. The retina then sends nerve signals are sent through the back of the eye to the optic nerve. The optic nerve carries these signals to the brain, which interprets them as visual images.
When standing on the bathroom scale within the moving elevator, there are two forces acting on Henry's mass: Normal force and gravity.
Gravity is always downward, and normal force is perpendicular to the surface on which the mass is located (the bathroom scale), in upward direction.
Normal force, can adopt any value needed to match the acceleration of the mass, according to Newton's 2nd Law.
Gravity (which we call weight near the Earth's surface) can be calculated as follows:
According to Newton's 2nd Law, it must be met the following condition:
As the gravity is larger than normal force, this means that the acceleration is downward, so, we choose this direction as the positive.
Solving for a, we get:
We can find the speed after the first 3.8 s (assuming a is constant), applying the definition of acceleration as the rate of change of velocity:
Now, if during the next 3.8 s, normal force is 930 N (same as the weight), this means that both forces are equal each other, so net force is 0.
According to Newton's 2nd Law, if net force is 0, the object is either or at rest, or moving at a constant speed.
As the elevator was moving, the only choice is that it is moving at a constant speed, the same that it had when the scale was read for the first time, i.e., 4 m/s downward.