Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

(b) The velocity of the car before the driver begins braking is

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

We can use the following equation of motion to calculate how far the car has travel since braking to stop


Also the distance from start to where the driver starts braking is

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m
Answer:
The stuntman will not make it
Explanation:
At the bottom of the swing, the equation of the forces acting on the stuntman is:

where:
T is the tension in the rope (upward)
mg is the weight of the man (downward), where
m = 82.5 kg is his mass
is the acceleration due to gravity
is the centripetal force, where
v = 8.65 m/s is the speed of the man
r = 12.0 m is the radius of the circule (the length of the rope)
Solving for T, we find the tension in the rope:

Since the rope's breaking strength is 1000 N, the stuntman will not make it.
8 electron are needed for bonding
I think the answer is c because the rest are false
The equivalent of several resistors in series is always more than the biggest single one, because it's their sum. ... In parallel, the equivalent is always less than the smallest one.