Answer:
the work required for the loading of second dart is 64 times greater as work required for loading the first dart.
Explanation:
k = spring constant of the spring loaded toy dart gun
x₁ = compression of spring to load the first dart = d
x₂ = compression of spring to load the second dart = 8 d
E₁ = Work required to load the first dart
E₂ = Work required to load the second dart
Work required to load the first dart is given as
E₁ = (0.5) k x₁² = (0.5) k d²
Work required to load the second dart is given as
E₂ = (0.5) k x₂² = (0.5) k (8d)² = (64) (0.5) k d²
E₂ = 64 E₁
So the work required for the loading of second dart is 64 times greater as work required for loading the first dart
So, the final velocity of the ball when it is 10.0 m above the ground approximately <u>26.2 m/s</u>.
<h3>Introduction</h3>
Hi ! In this question, I will help you. This question uses the principle of final velocity in free fall. Free fall occurs only when an object is dropped (without initial velocity), so the falling object is only affected by the presence of gravity. In general, the final velocity in free fall can be expressed by this equation :

With the following condition :
- v = final velocity (m/s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
<h3>Problem Solving</h3>
We know that :
= initial height = 45.0 m
= final height = 10.0 m- g = acceleration of the gravity = 9.8 m/s²
Note :
At this point 10 m above the ground, the object can still complete its movement up to exactly 0 m above the ground.
What was asked :
- v = final velocity = ... m/s
Step by Step






<h3>Conclusion</h3>
So, the final velocity of the ball when it is 10.0 m above the ground approximately 26.2 m/s.
<h3>See More :</h3>
Answer:
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces.
I hope it's helpful!
Hey There!
The atomic number represents the electrons and protons, therefore, if the atomic number of the element is 7 then there are 7 electrons and protons in the element.
In order to determine the amount of neutrons, you would subtract the atomic number from the atomic mass.
Hope this helped!
Answer:
6m/s
Explanation:
momentum = mass × change in velocity
∆p =m(v)
24 = 4(v)
V =>24/4 = 6m/s