125 W is the power output of this machine.
Answer:
Explanation:
Power is defined as the amount of work done on the system to move that system from its original state within the given time interval. So it can be determined by the ratio of work done with time interval. As work done is the measure of force required to move a system to a certain distance. Work done is calculated as product of force with displacement.
So in the present case, the force is given as 100 N, the displacement is given as 5 m and the time is given as 4 s, then power is

As Work done = Force acting on the machine × Displacement
So 
Power =
=125 W
So, 125 W is the power output of this machine.
Answer: Hello mate!
lets define the north as the y-axis and east as the x-axis.
Using the notation (x,y) we can define the initial position of the car as (0,0)
then the car travells 13 mi east, so now the position is (13,0)
then the car travels Y miles to the north, so the position now is (13, Y)
and we know that the final position is 25° degrees north of east of the initial position. This angle says that the distance traveled to the north is less than 13 mi because this angle is closer to the x-axis (or east in this case).
This angle is measured from east to north, then the adjacent cathetus is on the x-axis, in this case, 13mi
And we want to find the distance Y, so we can use the tangent:
Tan(25°) = Y/13
tan(25°)*13 mi = Y = 6.06 mi.
Answer:
planet that is farthest away is planet X
kepler's third law
Explanation:
For this exercise we can use Kepler's third law which is an application of Newton's second law to the case of the orbits of the planets
T² = (
a³ = K_s a³
Let's apply this equation to our case
a =
for this particular exercise it is not necessary to reduce the period to seconds
Plant W
10² = K_s
a_w =
a_w =
4.64
Planet X
a_x =
a_x = \frac{1}{ \sqrt[3]{K_s} } 74.3
Planet Y
a_y =
a_y = \frac{1}{ \sqrt[3]{K_s} } 18.6
Planet z
a_z =
a_z = \frac{1}{ \sqrt[3]{K_s} } 41.8
From the previous results we see that planet that is farthest away is planet X
where we have used kepler's third law
The answer would be : <span>hydrologists.
Hope this helps !
Photon</span>
Answer:
100m
Explanation:
100m
s=ut+1/2at^2
s= unknown, u=0, a=2, t=10
s=0*10+1/2(2)(10)^2
s=1/2(2)(100)
s=1(100)
displacement = 100 meters