Answer:
A. The nucleus can be either positively charged or neutral.
Explanation:
The nucleus of an atom contains protons and neutrons only. Whereas electrons revolve around the nucleus. Protons are positively charged, neutrons have no charge and electrons are negatively charged.
Answer:
The wave is traveling in the +x direction.
Explanation:
The equation of a wave is given by the formula as :

Here,
A is the amplitude of wave
is the phase of wave
is the angular frequency of the wave
We need to find the correct statement out of given options. The given equation can be rewritten as :

Here, the propagation constant is negative. So, the wave is moving in +x direction. Hence, the correct option is (a).
Answer:
900 cm/s or 9 m/s.
Explanation:
Data obtained from the question include the following:
Length (L) = 30 cm
frequency (f) = 60 Hz
Velocity (v) =.?
Next, we shall determine the wavelength (λ).
This is illustrated below:
Since the wave have 4 node, the wavelength of the wave will be:
λ = 2L/4
Length (L) = 30 cm
wavelength (λ) =.?
λ = 2L/4
λ = 2×30/4
λ = 60/4
λ = 15 cm
Therefore, the wavelength (λ) is 15 cm
Now, we can obtain the speed of the wave as follow:
wavelength (λ) = 15 cm
frequency (f) = 60 Hz
Velocity (v) =.?
v = λf
v = 15 × 60
v = 900 cm/s
Thus, converting 900 cm/s to m/s
We have:
100 cm/s = 1 m/s
900 cm/s = 900/100 = 9 m/s
Therefore, the speed of the wave is 900 cm/s or 9 m/s.
Answer:
Distance is directly proportional to the velocity
Explanation:
In 1929, Edwin Hubble's wrote an article that talked about relationship between the distance and recession speed/velocity of galaxies which led to what is known as the Hubble Law. This law states that galaxies are moving away from the earth at velocities proportional to their distances.
Thus is written as;
v = H_o•d
Where;
v is velocity
d is distance
H_o is Hubble's constant rate of cosmic expansion.
He came to this conclusion by generating a graph known as Hubble's classic graph which was a graph of observed velocity vs distance for nearby galaxies.
Many things can affect a material's resistance, The type of material, how the material is being held (If its laying flat, being pulled, etc). What the material is used for, and how much material there is. Hope this helps!