Vf = 0 + 3.5•8.7
= 30.45 m/s
Answer:
c = 1163.34 J/kg.°C
Explanation:
Specific heat capacity:
"Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass. The specific heat capacity of a material is a physical property."
Use this equation:
mcΔT = ( mw c + mAl cAl ) ΔT'
Rearranging the equation to find the specific heat (c) you get this:
c = (( mw c + mAl cAl ) ΔT') / (mΔT)
c = (( 0.285 (4186) + (0.15)(900)) (32 -25.1)) / ((0.125) (95 - 32))
c = 1163.34 J/kg.°C
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C
Answer:
η = 0.882 = 88.2 %
Explanation:
The efficiency of the pulley system can be given as follows:

where,
η = efficiency of pulley system = ?
W_out = Output Work = (600 N)(0.6 m) = 360 J
W_in = Input Work = (35.7 N)(11.43 m) = 408.051 J
Therefore,

<u>η = 0.882 = 88.2 %</u>
Answer:
he can explore other types of physical activity
Explanation:
lifting weights and paddling will help but running could also help