Answer:
C. less than 950 N.
Explanation:
Given that
Force in north direction F₁ = 500 N
Force in the northwest F₂ = 450 N
Lets take resultant force R
The angle between force = θ
θ = 45°
The resultant force R


R= 877.89 N
Therefore resultant force is less than 950 N.
C. less than 950 N
Note- When these two force will act in the same direction then the resultant force will be 950 N.
<span>the easy walk harness should be looser on the dog than other harnesses</span>
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2><h2 /><h2>

</h2><h2>
_____________________________________</h2>
<h2>DATA:</h2>
mass = m = 2kg
Distance = x = 6m
Force = 30N
TO FIND:
Work = W = ?
Velocity = V = ?
<h2>
SOLUTION:</h2>
According to the object of mass 2 kg travels a distance when the force was exerted on it. The graph between the Force and position was plotted which shows that 30 N of force was used to push the object till the distance of 6.0m.
To find the work, I will use the method of determining the area of the plotted graph. As the graph is plotted in the straight line between the Force and work, THE PICTURE ATTCHED SHOWS THE AREA COVERED IN BLUE AS WORK DONE AND HEIGHT AS 30m AND DISTANCE COVERED AS 6m To solve for the area(work) of triangle is given as,

Base is the x-axis of the graph which is Position i.e. 6m
Height is the y-axis of the graph which is Force i.e. 30N
So,

W = 90 J
The work done is 90 J.
According to the principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.



<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2>
I have the exact same question, any chance you figured it out since you posted this?
Answer:
Explanation:
(a) It is given that Joseph jogs on a straight road of 300m in a time interval of 2 minutes and 30 seconds, which is equal to 150seconds. Therefore, when Joseph jogs from point A to point B, he covers a distance of 300m in time of 150seconds. Hence, his average speed is 300m/150s=2ms^−1. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m.
Hence, his average velocity is 300m/150s=2ms^−1
(b) Then it is given that he turns back and points B and jogs on the same road but in the opposite direction for a time interval for 1 minute and covers a distance of 100m.If we consider the whole motion of Joseph, i.e. from point A to point C, then he covers a total distance of 300m+100m=400m. And he covers this total distance in a time interval of 2.5min+1min=3.5min=210s.
Therefore, his average speed for this journey is 400m210s=1.9ms−1.
For the same journey is displacement is equal to the distance between the points A and C,i.e. 300m−100m=200m.
Hence, his average velocity for this case is 200m/210s=0.95ms^−1