Answer:

0.3619sec
Explanation:
Given that
Mass,m=148 g
Length,L=13 cm
Velocity,u'(0)=10 cm/s
We have to find the position u of the mass at any time t
We know that

Where 

u(0)=0
Substitute the value

Substitute u'(0)=10


Substitute the values

Period =T = 2π/8.68
After half period
π/8.68 it returns to equilibruim
π/8.68 = 0.3619sec
Answer: 0m/s²
Explanation:
Since the forces acting along the plane are frictional force(Ff) and moving force(Fm), we will take the sum of the forces along the plane
According newton's law of motion
Summation of forces along the plane = mass × acceleration
Frictional force is always acting upwards the plane since the body will always tends to slide downwards on an inclined plane and the moving acts down the plane
Ff = nR where
n is coefficient of friction = tan(theta)
R is normal reaction = Wcos(theta)
Fm = Wsin(theta)
Substituting in the formula of newton's first law we have;
Fm-Ff = ma
Wsin(theta) - nR = ma
Wsin(theta) - n(Wcos(theta)) = ma... 1
Given
W = 562N, theta = 30°, n = tan30°, m = 56.2kg
Substituting in eqn 1,
562sin30° - tan30°(562cos30°) = 56.2a
281 - 281 = 56.2a
0 = 56.2a
a = 0m/s²
This shows that the trunk is not accelerating
Answer:
The horizontal component of displacement is d' = 1422.7 m
Explanation:
Given data,
The distance covered by the truck, d = 1430 m
The angle formed with the horizontal, Ф = 5.76°
The displacement is a vector quantity.
The horizontal component of displacement is given by,
d' = d cos Ф
= 1430 cos 5.76°
= 1422.7 m
Hence, the horizontal component of displacement is d' = 1422.7 m
The quantity that is calculated from the product of the force and the distance traveled due to the force is called work. It has SI units of Joules (J) which is equivalent to Newton-meter (N-m). It is the energy that happens when an object is being moved by an external force.
Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =

- v = final velocity of the electron
- e = magnitude of charge on an electron =

- p = magnitude of charge on a proton =

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.


Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.