Answer: -
The experiment Niven is doing is burning of Mg.
The first step would be finding the molar mass of MgO
Atomic mass of Mg = 24 g
Atomic mass of Oxygen = 16 g
Molar mass of MgO = 24 x 1 + 16 x 1 = 40 g
The balanced chemical equation for this reaction is
2 Mg + O2 -- > 2MgO
From the balanced equation we see that
2 Mg gives 2 MgO
2 x24 g of Mg O gives 2 x 40 g of MgO.
28g of MgO gives

= 46.66 g of MgO.
Answer:
The particles that compose a gas are so small compared to the distances between them that the volume of the individual particles can be assumed to be negligible.
Explanation:
This is a postulate of the Kinetic Molecular Theory.
A is wrong. KMT assumes the that the volume of the particles is negligible.
B is wrong. KMT assumes that the distance between the particles is muck greater than their size.
D is wrong. It takes the large distances as a fact. KMT uses this as an assumption.
Answer:

Explanation:
Atomic radius is the measurement from the nucleus to the outer edge of the electron cloud.
As you go down a group (vertically) the atomic radius increases because more electron shells are added. As you go across a period horizontally, the atomic radius decreases.
If we look at the halogens group (17), we see they follow this order from top to bottom:
F - Fluorine
Cl - Chlorine
Br - Bromine
I - Iodine
Since it increases down the group, iodine must have the largest atomic radius.
Answer is: <span>reaction is nonspontaneous under standard
conditions at all temperatures.</span>
<span>Gibbs free energy
(G) determines if reaction will proceed spontaneously.
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.
When ΔS < 0 (negative entropy change) and ΔH > 0
(endothermic reaction), the process is never spontaneous (ΔG> 0).</span>