Answer:
Explanation:
Given that:
The flow rate Q = 0.3 m³/s
Volume (V) = 200 m³
Initial concentration
= 2.00 ms/l
reaction rate K = 5.09 hr⁻¹
Recall that:







where;







Thus; the concentration of species in the reactant = 102.98 mg/l
b). If the plug flow reactor has the same efficiency as CSTR, Then:
![t _{PFR} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=t%20_%7BPFR%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{5.09} \Big [ In ( \dfrac{200}{102.96}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B5.09%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7B200%7D%7B102.96%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} =0.196 \Big [ In ( 1.942) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D0.196%20%5CBig%20%5B%20In%20%28%201.942%29%20%5CBig%20%5D)





The volume of the PFR is ≅ 140 m³
The potential energy of the products is higher than the potential energy of the reactants.
Charles law gives the relationship between temperature of gas and volume of gas.
It states that for a fixed amount of gas, temperature is directly proportional to volume of gas.
V / T = k
where V- volume , T - temperature and k - constant

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation.
T1 = 250 °C + 273 = 523 K
T2 = 150 °C + 273 = 423 K
Substituting the values in the equation,

V = 251 mL
the new volume is 251 mL