Hydrogen bonds are strong intermolecular forces created when a hydrogen atom bonded to an electronegative atom approaches a nearby electronegative atom. Greater electronegativity of the hydrogen bond acceptor will lead to an increase in hydrogen-bond strength.
I hope this helps
Answer:
a. Are miscible because each can hydrogen bond with the other.
Explanation:
Both ethanol and water are miscible. The reason why they can both mix freely is due to the hydrogen bonds that will form between their molecular structure.
Hydrogen bonds are special dipole-dipole attraction between polar molecules in which hydrogen atoms are directly joined to an electronegative atom.
Ethanol has an hydroxyl group which will bond to form an intermolecular bond with the oxygen and hydrogen on the water molecule. This attraction makes them miscible.
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.
Don't touch your eyes.
Never taste-test unless the teacher tells you to.
Do not touch anything without directions.
Wear safety goggles.
Wash your hands after each experiment.
Wear proper lab clothes.
Do not mishandle lab equipment.
Clean up your workplace.
Act serious; no horseplay!
Report accidents to the teacher right away!
Have a great day, scholar!
We can rephrase the statement with a little more specificity in order to understand the answer here.
The mass of the products can never be more than the The mass that is expected.