To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as
F = ma
Where,
m= Mass
a = Acceleration
At the same time the frictional force can be defined as,

Where,
Frictional coefficient
N = Normal force (mass*gravity)
Our values are given as,

By condition of Balance the friction force must be equal to the total net force, that is to say



Re-arrange to find acceleration,



Therefore the acceleration the horse can give is 
The effective acceleration or deceleration due to gravity depends on the inclined angle of the track relative to ground; the steeper the slope is the greater the effective acceleration.
Answer:
balanced?
Explanation:
because if it wasn't moving that means they are pulling at a similar strength
A :-) a = v^2 by r
Given - radius = 25 m
velocity = 10 m/s
Solution -
a = v^2 by r
a = ( 10 )^2 by 25
a = 100 by 25
( cut 25 and 100 because 25 x 4 = 100 )
a = 4 m/s^2
.:. The centripetal acceleration of the car
= 4 m/s^2.
Answer:
The separation of the 2 points should be 50.0 meters.
Explanation:
According to Rayleigh's scattering criteria the angular separation between 2 points to be resolved equals

Applying the given values we get

thus the linear separation equals 
Applying the given values we get
