Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
D) decreasing the temperature lowers the average kinetic energy of the reactants.
Answer:
K/2
Explanation:
The law of conservation of mechanical energy states that the sum of the kinetic and potential energies is a constant at any point.
At maximum height, the glove has purely potential energy but at the bottom, it has purely kinetic energy.
The potential energy at the top = kinetic energy at the bottom. The potential energy is given by

At half height, this potential energy is

At this height, PE + KE = Constant = KE at bottom or PE at maximum height.


Answer and Explanation:
This experiment is known as Lenz's tube.
The Lenz tube is an experiment that shows how you can brake a magnetic dipole that goes down a tube that conducts electric current. The magnet, when falling, along with its magnetic field, will generate variations in the magnetic field flux within the tube. These variations create an emf induced according to Faraday's Law:

This emf induced on the surface of the tube generates a current within it according to Ohm's Law:

This emf and current oppose the flux change, therefore a field will be produced in such a direction that the magnet is repelled from below and is attracted from above. The magnitude of the flux at the bottom of the magnet increases from the point of view of the tube, and at the top it decreases. Therefore, two "magnets" are generated under and above the dipole, which repel it below and attract above. Finally, the dipole feels a force in the opposite direction to the direction of fall, therefore it falls with less speed.
Dead starts bursting new ones being born, maybe more dwarf planets