Atomic mass= number of protons + number of neutrons

hope this helps
Lower mass: 1.20 kg, upper mass: 1.28 kg
Explanation:
In order to solve the problem, we consider the forces acting on the upper mass only first.
The upper mass is acted upon three forces:
- The applied force
, upward - The weight of the mass itself,
, where
is the upper mass and
is the acceleration of gravity, downward - The tension in the string,
, downward
Therefore, the equation of the forces for the upper mass is:

where
is the acceleration (upward)
Solving for
,

Now we can find the lower mass by considering the forces acting on it:
- The tension in the string, T = 16 N, upward
- The weight of the mass itself,
, where
is the lower mass, downward
So the equation of the forces is

And solving for the mass,

Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
For a concave mirror, the radius of curvature is twice the focal length of the mirror:

where f, for a concave mirror, is taken to be positive.
Re-arranging the formula we get:

and since the radius of curvature of the mirror in the problem is 24 cm, the focal length is
You want to know how to solve it?
Answer:
MT disc I = 2,752 10-3 kg m²
MB disc I = 2,726 10⁻³ kg m²
Explanation:
The moment of inertia given by the expression
I = ∫ r² dm
for bodies with high symmetry it is tabulated
for a hollow disk it is
I = ½ M (R₁² + R₂²)
let's apply this equation to our case
disc MT = 1,357 kg
I = ½ 1,357 (0.0079² + 0.0632²)
I = 2,752 10-3 kg m²
disk MB = 1,344 kg
I = ½ 1,344 (0.0079² + 0.0632²)
I = 2,726 10⁻³ kg m²