<span>Electromagnetic and mechanical waves differ in that electromagnetic waves are always longitudinal and do not require a known medium, while mechanical waves are either longitudinal or compression waves and require a medium. All known electromagnetic waves are also known as forms of light.</span>
Stack temperatures typically range from 350 to 450 degrees Fahrenheit. A 2.5% efficiency loss occurs for every 100 degrees over that temperature. The majority of buildings schedule annual boiler cleanings at regular intervals, but if you see those figures rise, it's time for a cleaning.
Excess air is required to completely burn the fuel since the air and fuel cannot combine exactly in a burner. Additionally, any leaks in the heater will draw air into the firebox that doesn't pass through the burners since the furnace or boiler firebox operates at a little negative gauge pressure. Fuels that are gaseous, like natural gas, burn more readily than fuels that are liquid or solid. Depending on the fuel type, different surplus air requirements will apply.
Learn more about temperature here-
brainly.com/question/15267055
#SPJ4
Answer:
12.5 ft/s
Explanation:
Height of person = 6 ft
height of lamp post = 10 ft
According to the question,
dx / dt = 5 ft/s
Let the rate of tip of the shadow moves away is dy/dt.
According to the diagram
10 / y = 6 / (y - x)
10 y - 10 x = 6 y
y = 2.5 x
Differentiate both sides with respect to t.
dy / dt = 2.5 dx / dt
dy / dt = 2.5 (5) = 12.5 ft /s
Answer:
Explanation:
Heat energy naturally transfers from a high temperature substance to a low temperature substance.
It is not a statement or direct application of the second law of thermodynamics.
The change in internal energy of a system can be found by combining the heat energy added to a system minus the work done by the system.
It is not a statement or direct application of the second law of thermodynamics. This statement is in accordance with first law of thermodynamics.
All the other two statements are in accordance with second law of thermodynamics.
Answer:
a) 103.32 m
b) 9.18 s
Explanation:
a) Let's use the knowledge that at the top of its trajectory, the baseball will have a final velocity of 0 m/s.
The acceleration due to gravity is -9.8 m/s², assuming the upwards direction is positive and the downwards direction is negative.
The initial velocity of the baseball is 45 m/s.
We are trying to find the vertical displacement of the baseball, Δx, and we have the variables v, a, and v₀.
Find the constant acceleration equation that contains all four of these variables:
Substitute the known values into the equation.
- (0)² = (45)² + 2(-9.8)Δx
- 0 = 2025 - 19.6Δx
- -2025 = -19.6Δx
- Δx = 103.32
The maximum height of the ball before it falls back down is 103.32 m.
b) Now we want to solve for time t. Find a constant acceleration equation that contains three known variables.
Substitute known values into this equation.
- 0 = 45 + (-9.8)t
- -45 = -9.8t
- t = 4.59183673
Remember that this is only half of the baseball's flight since we are using the final velocity for when the ball is halfway through its trajectory.
To solve for the total time the baseball is in the air, double the time t we solved for.
The baseball is in the air for 9.18 s.