The best way to think of 'per' is as the equivalent of 'for each'.
Answer:
The blue light has the highest energy.
Explanation:
Body that is hot enough emits light as consequence of its temperature. For example, an iron bar in contact with fire will start to change colors as the temperature increases until it gets to a blue color. That its know as Wien's displacement law, which establishes that the peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increases.
The same scenario described above can be found in the star, a star with higher temperature will have a blue color and one with lower temperature will have a red color.
(1)
The energy of each wavelength can be determined by means of the following equation:
(2)
but
, therefore:
(3)
Where h is the planck's constant and
is the frequency.
Notice that it is necessary to express the frequency in units of meters for a better representation of the energy.
⇒
⇒
Case for the bluest light:
Case for the reddest light:
Equation 3 show that if the wavelength is lower the energy will be greater (inversely proportional).
Hence, according with the result and what was explained above, the blue light has the highest energy.
Answer:To ensure significant dialogue which will guarantee that the needed Products meets specifications
It will help to develop a better Operational model for the users.
Explanation: The design phase is one of the most critical phase in product development,it is in this phase that the product structure, contents and specifications are put into action. It is necessary that the end users have a significant time to dialogue with the project or product development team to guarantee that the end product meets specifications.
It is also necessary to spent adequate time in order to make the product user friendly (easy to operate and maintain).
So what you do is you use the formula shown below:
specific heat capacity = energy required / (mass * change in temperature)
here ,
energy required = 10.0°C Note that cal. is short form for °C
mass (m) = 3.1g
change in temperature (ΔT) = 17.9°C Note that "ΔT" means change in temperature
So, plugging the values into the formula, we get,
Specific heat capacity=
=
= 0.1802 cal./g°C <span>i rounded the answer to the fourth decimal point
</span>
Answer:
The angular separation equals 
Explanation:
We have according to Snell's law


Using this equation for both the colors separately we have

Similarly for violet light we have

Thus the angular separation becomes
