It reacts because of the substances against if
Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .
Answer:
<h2>10 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 2 × 5
We have the final answer as
<h3>10 N</h3>
Hope this helps you
Because weight W = M g, the ratio of weights equals the ratio of masses.
(M_m g)/ (M_w g) = [ (p^2 Man )/ (2 K_man)] / [ (p^2 Woman )/ (2 K_woman)
but p's are equal, so
K_m/K_m = (M_w g)/(M_m g) = W_woman / W_man = 450/680 = 0.662
Answer:
speed of molecule ∝ 1/mass of molecule.
Explanation:
The velocities of the molecules depend on their masses. That's because if the molecules are large in size, their velocity is slower. Therefore their velocity is quicker when their size is small, since the molecules can move faster.
Therefore , it can be written as
speed of molecule ∝ 1/mass of molecule.