Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
The answer is A I’m not 100 percent sure tho
Answer:
it is 7
Explanation:
dogs are 7 HOPE THIS HELPED kidding i don get the question
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
Answer:
0.682L or 682mL
Use Charles Law of V1/T1 = V2/T2
V1 = 0.6L
T1 = 293K
V2=?
T2= 333K
Explanation:
?