<em>The mineral we are talking about here is olivine.</em>
<u>Explanation:</u>
It is a bit dark in color which ranges between yellow to Green to olive green. The luster present in it is nonmetallic luster but has a glassy finish and a substance hardness that is ranging between 6.5 to 7.
This mineral has granular masses which we can say has mass like sugar grains. This mineral has cleavage with conchoidal fracture present in it.
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
The cations and anions being oppositely charged attract each other through strong coloumbic forces and form an ionic bond.
(1) Sodium is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(2) Sodium is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(3) Sodium is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(4) Sodium is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(5) Potassium is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. They form .
(6) Potassium is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(7) Potassium is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(8) Potassium is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(9) Calcium is carrying +2 charge called as cation and chloride is an anion carrying -1 charge. They form .
(10) Calcium is carrying +2 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(11) Calcium is carrying +2 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(12) Calcium is carrying +2 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(13) Ammonium ion is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. They form .
(14) Ammonium ion is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(15) Ammonium ion is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(16) Ammonium ion is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(17) Iron is carrying +3 charge called as cation and chloride is an anion carrying -1 charge. They form .
(18) Iron is carrying +3 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(19) Iron is carrying +3 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(20) Iron is carrying +3 charge called as cation and carbonate is an anion carrying -2 charge. They form .
So a compound is 52% Zinc(Zn), 9.6% Carbon(C), and 38.4% Oxygen (O). Let’s first start off by assuming that we have 100 g of this compound. This means that we have 52 g of Zinc, 9.6 g of Carbon, and 38.4 g of Oxygen.Zinc = 65.38 g/molCarbon = 12 g/molOxygen = 16 g/molThis means we have:52 g of Zn(1 mol Zn/65.38 g of Zn) ≈0.8 mol of Zn.9.6 g of C(1 mol C/12 g of C) = 0.8 mol of C38.4 g of O(1 mol of O/16 g of O) = 2.4 mol of O.
Explanation:
What we want to do next is divide each element by the common factor of all of them, which is 0.8. In most cases, you divide each element by the element with the least amount of moles. After we divide each by 0.8, you’ll notice you have 1 Zn, 1 C, and 3 O. This gives you the empirical formula of ZnCO3, or Zinc Carbonate.
The electrons that are involved in chemical bonding are those in the outer shell of the highest energy level of the atom. The electron configuration of nitrogen (N) is 1s²2s²2p³. That means thy at each nitrogen atom has 5 valence electrons: 2 electrons in the 2s orbital and 3 electrons in the 2p orbital. To fullfil the octet, each nitrogen atom needs 3 electrons. So, they can share each other 3 electrons to form 3 simple bonds. Therefore, the nitrogen molecule (N₂) has 3 bonds involving 6 bonding electrons or a triple bond.