Answer:
Explanation:
The reaction is given as:

The reaction quotient is:
![Q_C = \dfrac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q_C%20%3D%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
From the given information:
TO find each entity in the reaction quotient, we have:
![[NH_3] = \dfrac{6.42 \times 10^{-4}}{3.5}\\ \\ NH_3 = 1.834 \times 10^{-4}](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%20%5Cdfrac%7B6.42%20%5Ctimes%2010%5E%7B-4%7D%7D%7B3.5%7D%5C%5C%20%5C%5C%20NH_3%20%3D%201.834%20%5Ctimes%2010%5E%7B-4%7D)
![[N_2] = \dfrac{0.024 }{3.5}](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%5Cdfrac%7B0.024%20%7D%7B3.5%7D)
![[N_2] = 0.006857](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%200.006857)
![[H_2] =\dfrac{3.21 \times 10^{-2}}{3.5}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%5Cdfrac%7B3.21%20%5Ctimes%2010%5E%7B-2%7D%7D%7B3.5%7D)
![[H_2] = 9.17 \times 10^{-3}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%209.17%20%5Ctimes%2010%5E%7B-3%7D)
∴

However; given that:

By relating
, we will realize that 
The reaction is said that it is not at equilibrium and for it to be at equilibrium, then the reaction needs to proceed in the forward direction.
With what are you need help?
NaBr + CaF2 → NaF + CaBr2 What coefficients are needed to balance the chemical equation? A) 1,1,1,1 B) 1,2,1,2 C) 1,2,2,1 D) 2,1
elena-s [515]
D.
2NaBr + CaF2 --> 2NaF + CaBr2 gives you:
2Na 2Na
2Br 2F
1Ca 1Ca
2F 2Br
This is balanced.
The red bottle would have the lowest frequency because red light has the longest wavelengths. The light passing through the violet would have the highest frequency because its wavelengths are the shortest.
Answer:
an alkali
Explanation:
an alkali is a base that is slightly soluble in water