Answer:
166 g
Explanation:
Step 1: Write the reaction for the obtaining of Fe from magnetite
Fe₃O₄ ⇒ 3 Fe + 2 O₂
Step 2: Calculate the moles corresponding to 120 g of Fe
The molar mass of Fe is 55.85 g/mol.
120 g × (1 mol/55.85 g) = 2.15 mol
Step 3: Calculate the moles of Fe₃O₄ required to produce 2.15 moles of Fe
The molar ratio of Fe₃O₄ to Fe is 1:3. The moles of Fe₃O₄ required are 1/3 × 2.15 mol = 0.717 mol
Step 4: Calculate the mass corresponding to 0.717 moles of Fe₃O₄
The molar mass of Fe₃O₄ is 231.53 g/mol.
0.717 mol × 231.53 g/mol = 166 g
Answer:this case, the mass is 2.0g, the specific heat capacity of water is 4.18J/g/K, and the change in temperature is 5.0°C=5K , therefore the energy needed to raise it is: 5×2×4.18=41.8J
Explanation:
There are approximately 160 grams in 1 mol of Fe2O3 molecules. Therefore, there would be 79/160= 0.49375 mols of Fe2O3 molecules in 79 grams. There are 5 atoms in total for each molecule of Fe2O3, therefore 79/160 * 5 = 79/32 = 2.46875 mols of atoms.
<u>Racemic </u><u>mixture</u>
An equimolar mixture of the enantiomers is called Racemic mixture. It may be represented as dl or (±)
I'd say that his comb has a static electricity charge. It can either be negative, or positive. Let's just say it's positive, and the water is negatively charged. This means that it will affect the water flow when the two charges meet. I hope this helps! ~Mia