Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
Answer:
When the humidity is 100 percent, the air is saturated with water. Air pressure also affects evaporation. If air pressure is high on the surface of a body of water, then the water will not evaporate easily. The pressure pushing down on the water makes it difficult for water to escape into the atmosphere as vapor.
Explanation:
Answer:
A white dwarf is what stars like the Sun become after they have exhausted their nuclear fuel. Near the end of its nuclear burning stage, this type of star expels most of its outer material, creating a planetary nebula. Only the hot core of the star remains. ... That means a white dwarf is 200,000 times as dense.
Explanation:
they are cold
they are about the size of Earth
these both are not true
Answer:
80L
Explanation:
V1/T1 = V2/T2
V2 = V1 T2/T1
T1 = 300K
V1 = 60L
T2 = 400K
V2 = ?
V2 = V1 T2/T1
V2 = (60L)(400K) / (300K)
V2 = 80L
Answer:
C.
Explanation:
The mass of the reactants should not change, in fact it would be equal because the only thing that changes is the form in which your products are in. The reactants will still have the same amount of mass from the products as no products were removed or added, the structure changed, the mass did not.