Answer:
ASA
Step-by-step explanation:
Given:
Two triangles ABC and EDC such that:
AB ⊥ BD and BD ⊥ DE
C is the midpoint of BD.
The two triangles are drawn below.
Since, AB ⊥ BD and BD ⊥ DE
Therefore, the two triangles are right angled triangle. The triangle ABC is right angled at vertex B. The triangle EDC is right angled at vertex D.
Since, point C is the midpoint of the line segment BD.
Therefore, C divides the line segment BD into two equal parts.
So, segment BC ≅ segment CD (Midpoint theorem)
Now, consider the triangles ABC and EDC.
Statements Reason
1. ∠ABC ≅ ∠CDE Right angles are congruent to each other
2. BC ≅ CD Midpoint theorem. C is midpoint of BD
3. ∠ACB ≅ ∠ECD Vertically opposite angles are congruent
Therefore, the two triangles are congruent by ASA postulate.
So, the second option is correct.
Buddy the dog weighs 75 and sadie the dog weighs 61.
Answer:5/6
Step-by-step explanation:
Answer: 24 lemons
Step-by-step explanation: Good luck! :D
8 lemons - 10 cups
16 lemons - 20 cups
24 lemons - 30 cups
Answer:
−4,2+2i√3, and 2−2i√3 is the correct answer