Answer:
Boiling point
Explanation:
Distillation is one of the most widely used separation technique in chemistry. It is used to separate a mixture of liquid substances with different boiling point. Hence, the basis of the separation is BOILING POINT DIFFERENCE.
In the procedure, the liquid substances are heated until they turn gaseous, which they do at different times considering their different boiling points. The separated components are then converted back to liquid states in a process called CONDENSATION.
Psolution = X · PH_20
= 0.966 · 31.8 torr
= 30.7 torr
You may find the Lewis dot structure of the CH₃-Br in the attached picture.
Explanation:
In the Lewis dot structure we represent the unpaired electrons using dots.
Bromide have one electron shared with one electron from the carbon to form a covalent bond, while the remaining electrons remains unpaired. We represent the six unpaired electrons of the bromide with dots.
Learn more about:
structure of organic compounds
brainly.com/question/14122960
#learnwithBrainly
Sodium potassium pump is an active pump which transfer sodium and potassium ions across the membrane with the expenditure of energy in the form of ATP.
This kind of pump is generally used in nerve cells.
The pump works against the concentration gradient as the pump moves three Na+ ions outside the cell and two K+ ions inside the cell, though there is a high concentration of Na+ outside the cell and a low concentration of K+ outside the cell.
Answer:
N₂ = 6.022 × 10²³ molecules
H₂ = 18.066 × 10²³ molecules
NH₃ = 12.044 × 10²³ molecules
Explanation:
Chemical equation;
N₂ + 3H₂ → 2NH₃
It can be seen that there are one mole of nitrogen three mole of hydrogen and two moles of ammonia are present in this equation. The number of molecules of reactant and product would be calculated by using Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
Number of molecules of nitrogen gas:
1 mol = 6.022 × 10²³ molecules
Number of molecules of hydrogen:
3 mol × 6.022 × 10²³ molecules/ 1 mol
18.066 × 10²³ molecules
Number of molecules of ammonia:
2 mol × 6.022 × 10²³ molecules/ 1 mol
12.044 × 10²³ molecules