Answer:
The mass of
4.6
×
10
24
atoms of silver is approximately 820 g.
Explanation:
In order to determine the mass of a given number of atoms of an element, identify the equalities between moles of the element and atoms of the element, and between moles of the element and its molar mass.
1
mole atoms Ag=6.022xx10
23
atoms Ag
Molar mass of Ag =#"107.87 g/mol"#
Multiply the given atoms of silver by
1
mol Ag
6.022
×
23
atoms Ag
. Then multiply times the molar mass of silver.
4.6
×
10
24
atoms Ag
×
1
mol Ag
6.022
×
10
23
atoms Ag
×
107.87
g Ag
1
mol Ag
=
820 g Ag
Use a magnet to separate the iron from the sand.
Answer:
Explanation:
1) a, b) A <em>solution</em><em> is a homogeneous mixture of two or more substances</em>. The <em>solute</em><em> is the substance present in a smaller amount</em>, and the <em>solvent</em><em> is the substance present in a larger amount. </em>
c) <em>A </em><em>saturated solution</em><em> contains the maximum amount of a solute that will dissolve in a given solvent at a specific temperature. </em>
2) See picture in attachment.
ADSORPTION: The adhesion of a liquid or gas on the surface of a solid material, forming a thin film on the surface. Not to be confused with the process of absorption.
ABSORPTION: The act or process of absorbing or of being absorbed as
Answer:
A = 0.023 m
Explanation:
The relation between the frequency of a radiation and its wavelength is given by the following expression.
where,
c is the speed of light (it has a constant value of 3.00 x 108 m/s)
A is the wavelength of the radiation v is the frequency of the radiation
In this case, the frequency is 13 GHz = 13 x
10° Hz = 13 x 1o° s-
The wavelength associated with this frequency is:
A = c/v = (3.00 x 10° m/s)/(13 x 10° s-") = 0.023