Answer:
Primer postulado:
Así Bohr asumió que el átomo de hidrógeno puede existir solo en ciertos estados discretos, los cuales son denominados estados estacionarios del átomo. En el átomo no hay emisión de radiación electromagnética mientras el electrón no cambia de órbita.
Explanation:
The answer to your question is,
Metalloids. They are a mix of elements that are both metals and non-metals in one.
-Mabel <3
Answer: The answer is D :)
Explanation:
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = ![\Delta H_f_{(I_2)}=62.438 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H_f_%7B%28I_2%29%7D%3D62.438%20kJ%2Fmol)
Enthalpy of formation of chlorine gas = ![\Delta H_f_{(Cl_2)}=0 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H_f_%7B%28Cl_2%29%7D%3D0%20kJ%2Fmol)
Enthalpy of formation of ICl gas = ![\Delta H_f_{(ICl)}=17.78 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H_f_%7B%28ICl%29%7D%3D17.78%20kJ%2Fmol)
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:
![I_2(g)+Cl_2(g)\rightarrow 2ICl(g),\Delta H_{rxn}=?](https://tex.z-dn.net/?f=I_2%28g%29%2BCl_2%28g%29%5Crightarrow%202ICl%28g%29%2C%5CDelta%20H_%7Brxn%7D%3D%3F)
The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:
![\Delta H= \Delta H_{rxn}\times 1.62 mol=(-26.878 kJ/mol)\times 1.62 mol=-43.542 kJ](https://tex.z-dn.net/?f=%5CDelta%20H%3D%20%5CDelta%20H_%7Brxn%7D%5Ctimes%201.62%20mol%3D%28-26.878%20kJ%2Fmol%29%5Ctimes%201.62%20mol%3D-43.542%20kJ)
Entropy of the surrounding = ![\Delta S^o_{surr}=\frac{\Delta H}{T}](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Bsurr%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7BT%7D)
![=\frac{-43.542 kJ}{298 K}=\frac{-43,542 J}{298 K}=-146.11 J/K](https://tex.z-dn.net/?f=%3D%5Cfrac%7B-43.542%20kJ%7D%7B298%20K%7D%3D%5Cfrac%7B-43%2C542%20J%7D%7B298%20K%7D%3D-146.11%20J%2FK)
1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.
The empirical formula is K₂O.
The empirical formula is the <em>simplest whole-number ratio</em> of atoms in a compound.
The <em>ratio of atom</em>s is the same as the <em>ratio of moles</em>.
So, our job is to calculate the <em>molar ratio</em> of K to O.
Step 1. Calculate the <em>moles of each element
</em>
Moles of K = 32.1 g K × (1 mol K/(39.10 g K =) = 0.8210 mol K
Moles of O = 6.57 g O × (1 mol O/16.00 g O) = 0.4106 mol 0
Step 2. Calculate the <em>molar ratio of each elemen</em>t
Divide each number by the smallest number of moles and round off to an integer
K:O = 0.8210:0.4106 = 1.999:1 ≈ 2:1
Step 3: Write the <em>empirical formula
</em>
EF = K₂O