Temperature, salinity, and density are the group of factors are most important in determining the composition of ocean water.
a.)temperature, salinity, and density
<u>Explanation:</u>
The three fundamental factors that help in determining the composition of ocean water are temperature, salinity, and density. Temperature, saltiness, salinity, and density influence the thickness of seawater.
Enormous water masses of various densities are significant in the layering of the sea water (increasingly thick water sinks). As temperature builds water turns out to be less thick. As saltiness builds water gets denser. The temperature helps in deciding the pace of vanishing of the ocean.
Hey there!:
Molar mass of Mg(OH)2 = 58.33 g/mol
number of moles Mg(OH)2 :
moles of Mg(OH)2 = 30.6 / 58.33 => 0.5246 moles
Molar mass of H3PO4 = 97.99 g/mol
number of moles H3PO4:
moles of Mg(OH)2 = 63.6 / 97.99 => 0.649 moles
Balanced chemical equation is:
3 Mg(OH)2 + 2 H3PO4 ---> Mg3(PO4)2 + 6 H2O
3 mol of Mg(OH)2 reacts with 2 mol of H3PO4 ,for 0.5246 moles of Mg(OH)2, 0.3498 moles of H3PO4 is required , but we have 0.649 moles of H3PO4, so, Mg(OH)2 is limiting reagent !
Now , we will use Mg(OH)2 in further calculation .
Molar mass of Mg3(PO4)2 = 262.87 g/mol
According to balanced equation :
mol of Mg3(PO4)2 formed = (1/3)* moles of Mg(OH)2
= (1/3)*0.5246
= 0.1749 moles of Mg3(PO4)2
use :
mass of Mg3(PO4)2 = number of mol * molar mass
= 0.1749 * 262.87
= 46 g of Mg3(PO4)2
Therefore:
% yield = actual mass * 100 / theoretical mass
% = 34.7 * 100 / 46
% = 3470 / 46
= 75.5%
Hope that helps!
58874889879879797fc8755555555555555555555555555555555555555555555511111111111111111111111111111111113333333333333333333222222222222220000000000000000000000000000000000000000000000..................
The given above pretty much states already that with the presence of the calcium carbonate which acts as the buffer will allow the solution to withstand changes in acidity. The greater the amount, the higher chances that it will be able to withstand the said changes. Therefore, if Lake X had greater ppm of CaCO3 then, it will be able to withstand greater amount of acid rain.
When a bath bomb comes in contact with water, the baking soda and citric acid react to make carbon dioxide bubbles. This is an acid–base reaction, where baking soda (also called sodium bicarbonate) is a weak base and citric acid is a weak acid.