<span>There are three atoms of Sn (Stannous or Tin) in</span> 356.13 g of Sn.
<span>One atom of Sn has the atomic mass (m</span>ₐ<span>) of </span>118,71u which means:
356.13/118.71=3 atoms of Sn
The mass number (symbol A) also called atomic mass number or nucleon number is the total number of protons and neutrons in an atomic nucleus. It determines the atomic mass of atoms and it is in the periodic table.
<u>Answer:</u> The volume of concentrated solution required is 9.95 mL
<u>Explanation:</u>
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
pH = 0.70
Putting values in above equation, we get:
![0.70=-\log[H^+]](https://tex.z-dn.net/?f=0.70%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-0.70}=0.199M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-0.70%7D%3D0.199M)
1 mole of nitric acid produces 1 mole of hydrogen ions and 1 mole of nitrate ions.
Molarity of nitric acid = 0.199 M
To calculate the volume of the concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated nitric acid solution
are the molarity and volume of diluted nitric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of concentrated solution required is 9.95 mL
Since orbital period depends on how far you are from the sun, planets closer to the sun have a orbital period less than one earth year.
These planets are Mercury and Venus
This<span> will require'' </span>266.9kJ''<span> of heat energy
</span>
To calculate the energy required to raise the temperature of any given substance, here's what you require:
The mass of the material, <span>m</span>
Answer:
The answer is 20 % V/V
Explanation:
We use this formula for calculate the %V/V:
%V/V= (ml solute/ml solution) x 100= (75ml/375 ml)x 100 = 20 % V/V
<em>The% V / V represents the amount of ml of solute dissolved in 100 ml of solution</em>