The problem of the "sound barrier" has to do with moving through
air, and the things the air does when you try to push it out of the
way faster than the speed of sound. Moving through air faster
than sound was an engineering and technological problem, not
a scientific one.
Concerning light, that's about 874 thousand times faster.
See the problem ?
Answer:
692.31 N
Explanation:
Applying,
F = ma............... Equation 1
Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player
But,
a = (v-u)/t............ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t............ Equation 3
From the question,
Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s
Substitute these values into equation 3
F = 75(0-6)/0.65
F = -692.31 N
Hence the average force required to stop the player is 692.31 N
Answer:
Word for the first blank: gravity
Word for the second blank: matter
Explanation:
The only way debris from the impact with Earth can be held close to Earth is due to a force. The only force that could be acting from Earth is "the force of gravity".
The gravitational pull of this new object being formed, increases proportional to its mass as more and more "matter" accumulates. And the accretion process is now on its way.
Answer:
W = 285.62 N
Explanation:
It is given that,
Mass of Jessica is 55 kg
Slope of the hill is 32 degrees
We need to find the component of her weight that is along her direction of motion.
The component along her direction of motion is shown in attached figure. It means

So, the component of her weight that is along her direction of motion is 285.62 N.
Given:
L = 1 mH =
H
total Resistance, R = 11 
current at t = 0 s,
= 2.8 A
Formula used:

Solution:
Using the given formula:
current after t = 0.5 ms = 
for the inductive circuit:


I =0.011 A