Answer: Rn :)))) no explanation needed
Answer:
Explanation:
Given that,
Mass of block
M = 2kg
Spring constant k = 300N/m
Velocity v = 12m/s
At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0
xo = 0
It velocity is 12m/s at t=0
Then, it initial velocity is
Vo = 12m/s
Then, amplitude is given as
A = √[xo + (Vo²/ω²)]
Where
xo is the initial amplitude =0
Vo is the initial velocity =12m/s
ω is the angular frequency and it can be determine using
ω = √(k/m)
Where
k is spring constant = 300N/m
m is the mass of object = 2kg
Then,
ω = √300/2 = √150
ω = 12.25 rad/s²
Then,
A = √[xo + (Vo²/ω²)]
A = √[0 + (12²/12.5²)]
A = √[0 + 0.96]
A = √0.96
A = 0.98m
Answer:
P = 180 [w]
Explanation:
To solve this problem we must use ohm's law, which is defined by the following formula.
V = I*R & P = V*I
where:
V = voltage = 200[volts]
I = current [amp]
R = resistance [ohm]
P = power [watts]
Since the bulbs are connected in series, the powers should be summed
P = 60 + 60 + 60
P = 180 [watts]
Now we can calculate the current
I = 180/200
I = 0.9[amp]
Attached is an image where we see the three bulbs connected in series, in the circuit we see that the current is the same for all the elements connected to the circuit.
And the power is defined by P = V*I
we know that the voltage is equal to 200[V], therefore
P = 200*0.9
P = 180 [w]