Answer:
the shooting angle ia 18.4º
Explanation:
For resolution of this exercise we use projectile launch expressions, let's see the scope
R = Vo² sin (2θ) / g
sin 2θ = g R / Vo²
sin 2θ = 9.8 75/35²
2θ = sin⁻¹ (0.6)
θ = 18.4º
To know how for the arrow the tree branch we calculate the height of the arrow at this point
X2 = 75/2 = 37.5 m
We calculate the time to reach this point since the speed is constant on the X axis
X = Vox t
t2 = X2 / Vox = X2 / (Vo cosθ)
t2 = 37.5 / (35 cos 18.4)
t2 = 1.13 s
With this time we calculate the height at this point
Y = Voy t - ½ g t²
Y = 35 sin 18.4 1.13 - ½ 9.8 1,13²
Y = 6.23 m
With the height of the branch is 3.5 m and the arrow passes to 6.23, it passes over the branch
Answer:
The total energy of the composite system is 7.8 J.
Explanation:
Given that,
Height = 0.15 m
Radius of circular arc = 0.27 m
Suppose, the entire track is friction less. a bullet with a m₁ = 30 g mass is fired horizontally into a block of wood with m₂ = 5.29 kg mass. the acceleration of gravity is 9.8 m/s.
Calculate the total energy of the composite system at any time after the collision.
We need to calculate the total energy of the composite system
Total energy of the system at any time = Potential energy of the system at the stopping point


Put the value in to the formula


Hence, The total energy of the composite system is 7.8 J.
V = 8 * 10^2 km/h = 800km/h
S= 1,8* 10^3 km = 1800km
t = ?
v = S/t
t = S/v
t = 1800km/ 800km/h
t ≈ 2,25h (135min)
<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam.
1)What is the force the left support exerts on the beam?
2)What is the force the right support exerts on the beam?
3)How much extra mass could the gymnast hold before the beam begins to tip?
Now the gymnast (not holding any additional mass) walks directly above the right support.
4)What is the force the left support exerts on the beam?
5)What is the force the right support exerts on the beam?</span>
The sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
<h3>
Conservation of mechanical energy</h3>
The principle of conservation of mechanical energy states that the total mechanical energy of an isolated system (absence of external force) is always constant.
M.A = P.E + K.E
where;
P.E is potential energy
K.E is kinetic energy
Thus, the sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
Learn more about conservation of mechanical energy here: brainly.com/question/24443465