The buoyant force exerted by a liquid is equal to the weight of the fluid <span>displaced.</span>
Answer:
The workdone is 
Explanation:
From the question we are told that
The height of the cylinder is 
The face Area is 
The density of the cylinder is 
Where
is the density of freshwater which has a constant value

Now
Let the final height of the device under the water be 
Let the initial volume underwater be 
Let the initial height under water be 
Let the final volume under water be 
According to the rule of floatation
The weight of the cylinder = Upward thrust
This is mathematically represented as


So 
=> 
Now the work done is mathematically represented as

![= \rho_w g A [\frac{h^2}{2} ] \left | h_f} \atop {h}} \right.](https://tex.z-dn.net/?f=%3D%20%20%20%5Crho_w%20g%20A%20%5B%5Cfrac%7Bh%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20h_f%7D%20%5Catop%20%7Bh%7D%7D%20%5Cright.)
![= \frac{g A \rho}{2} [h^2 - h_f^2]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%20%5Bh%5E2%20-%20h_f%5E2%5D)
![= \frac{g A \rho}{2} (h^2) [1 - \frac{h_f^2}{h^2} ]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%28h%5E2%29%20%20%5B1%20%20-%20%5Cfrac%7Bh_f%5E2%7D%7Bh%5E2%7D%20%5D)
Substituting values

Answer:
Similarities between magnetic fields and electric fields: ... Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges). Like poles repel; unlike poles attract. Electric field points in the direction of the force experienced by a positive charge ...
Explanation:
copied and pasted from google. I copied and pasted your question into google and got this exact answer
Here is another thing from the same website just not shortened:
Similarities between magnetic fields and electric fields:
- Electric fields are produced by two kinds of charges, positive and negative. Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges).
- Like poles repel; unlike poles attract
- Electric field points in the direction of the force experienced by a positive charge. Magnetic field points in the direction of the force experienced by a north pole.
Differences between magnetic fields and electric fields:
- Positive and negative charges can exist separately. North and south poles always come together. Single magnetic poles, known as magnetic monopoles, have been proposed theoretically, but a magnetic monopole has never been observed.
- Electric field lines have definite starting and ending points. Magnetic field lines are continuous loops. Outside a magnet the field is directed from the north pole to the south pole. Inside a magnet the field runs from south to north.
Answer:
a) A=0.125 m
b) T = 1.72 s
c) f= 0.58 Hz
Explanation:
a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m
b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it has passed through the equilibrium point only once.
This means that the period must be exactly the double of this time:
T = 2*0. 860 sec = 1.72 sec.
c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency f as follows:
f = 1/T = 1/ 1.72 s= 0.58 Hz