Answer:
I'm sorry but I'm not doing the whole test
Explanation:
Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:

Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g
Answer:
If you mean the number of atoms in 8g of oxygen, it's 3.011 x 10^23 atoms.
Explanation:
Convert the grams to moles. 8 grams of oxygen is 0.5 moles. Then multiply the number of moles by Avogadro's number: 6.022 x 10^23.
C is the answer because he wants to know if less force is needed to pull on a slippery surface which reduces friction