Answer:
We take 20.0 mL of the 1.0 M fruit drink solution and then add 80.0 mL of water to make 100 mL of a 0.2 M fruit drink solution.
Explanation:
- Using the rule that: the no. of millimoles of a solution before dilution is equal to the no. of millimoles of the solution after the dilution.
<em>(MV) before dilution = (MV) after dilution.</em>
M before dilution = 1.0 M, V before dilution = ??? mL.
M after dilution = 0.2 M, V after dilution = 100 mL.
<em>∴ V before dilution = (MV) after dilution / M before dilution </em>= (0.2 M)(100 mL) / (1.0 M) = <em>20.0 mL.</em>
<em>So, we take 20.0 mL of the 1.0 M fruit drink solution and then add 80.0 mL of water to make 100 mL of a 0.2 M fruit drink solution.</em>
The question is incomplete. The complete question is:
The half-life for the decay of carbon-14 is 5.73x10^3 years. Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of woodfrom an archeological dig is measured to be 2.8x10^3 Bq. The activity in a similiar-sized sample of fresh wood is measured to be 3.0x10^3 Bq. Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
570 years
Explanation:
The activity of the fresh sample is taken as the initial activity of the wood sample while the activity measured at a time t is the present activity of the wood artifact. The time taken for the wood to attain its current activity can be calculated from the formula shown in the image attached. The activity at a time t must always be less than the activity of a fresh wood sample. Detailed solution is found in the image attached.
Answer:
The correct answer is A Energy leaves the iron bar and enters the wood until the temperature are equal.
Explanation:
According to the law of conservation of energy or the first law thermodynamics energy neither be created nor destroyed, energy is transferred from one form to another form.
Here iron bar is placed in wood block energy is transferred from iron bar to wood until the temperatures are equal.