For i: 33mL
For ii: 87-88mL
For iii:22.3mL
Answer:
6.217 pounds
Explanation:
We are given;
- Density of body fats 0.94 g/mL
- Volume of fats removed = 3.0 L
We are required to determine the mass of fats removed in pounds.
We need to know that;
Density = Mass ÷ volume
1 L = 1000 mL, thus, volume is 3000 mL
Rearranging the formula;
Mass = Density × Volume
= 0.94 g/mL × 3000 mL
= 2,820 g
but, 1 pound = 453.592 g
Therefore;
Mass = 2,820 g ÷ 453.592 g per pound
= 6.217 pounds
Thus, the amount of fats removed is 6.217 pounds
The molecules of a liquid substance are closely packed together to each other. So as a result, liquids are denser than gases.
<h3>
What is the difference between the density of liquid and gas?</h3>
A mass of gas will have a much larger volume compared to the same mass of liquid. This is because it has a much lower density. The density of gaseous oxygen is 0.0014 g/cm3. Density is ρ=Mass Volume. We know that gas will uniformly occupy more space than liquid whatever volume is available to it. On the other hand, solids and liquids, are closely packed as compared to gas and are high-density materials where ρ is relatively constant.
So we can conclude that the molecules of a liquid substance are closely packed together with each other. So as a result, liquids are denser than gases.
Learn more about Density: brainly.com/question/1354972
#SPJ1
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.