Answer:
3 moles
Explanation:
To solve this problem we will use the Avogadro numbers.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms, ions or molecules in one mole of substance. According to this,
1.008 g of hydrogen = 1 mole = 6.022×10²³ atoms.
18 g water = 1 mole = 6.022×10²³ molecules
we are given 36 g of C-12. So,
12 g of C-12 = 1 mole
24 g of C-12 = 2 mole
36 g of C-12 = 3 mole
So 3 moles of C-12 equals to the number of particles in 36 g of C-12.
First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min
Answer:
A. thermal and light
Explanation:
• Light energy is the first energy produced by the bulb, with time heat energy or thermal energy is also produced.

Of... its isotopes multiplied by each of their respective abundances