Answer:
1.0975 atm.
Explanation:
<em>According to Boyle’s Law:</em> "
At constant temperature , the volume of a given quantity of a gas varies inversely with its pressure".
P α 1/V.
<em>∴ P₁V₁ = P₂V₂.</em>
P₁ = 4.39 atm, V₁ = 0.5 L.
P₂ = ??? atm, V₂ = 2.0 L.
<em>∴ P₂ = P₁V₁/V₂</em> = (4.39 atm)(0.5 L) / (2.0 L) = <em>1.0975 atm.</em>
Answer:
Actual yield = 86.5g
Explanation:
Percent yield = 82.38%
Theoretical yield = 105g
Actual yield = x
Equation of reaction,
CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O
Percentage yield = (actual yield / theoretical yield) * 100
82.38% = actual yield / theoretical yield
82.38 / 100 = x / 105
Cross multiply and make x the subject of formula
X = (105 * 82.38) / 100
X = 86.499g
X = 86.5g
Actual yield of CaCl₂ is 86.5g
Answer:
3.- The same
Explanation:
1.- In the reactants you need to calculate the charges that you have:
2 Al(s) = zero, because the aluminum is in it based formed (that mean without charge).
3 Cu2+ = 3 x 2+ = 6+ That is the total positive charges that copper collaborate in this reaction.
2.- Then calculate the charges on the products:
2 Al3+ = 2 x 3+ = 6+ charges from the aluminum.
3 Cu(s) = zero, because the copper in this case is in the base form
3.- In this way, the charges at the begging (6+) and at the end (6+) are the same.
Answer:
The answer to your question is 160 g of Calcium
Explanation:
Data
mass of Calcium = ?
mass of Hydrogen = 8 g
reactant = HCl
Process
1.- Write the balanced chemical reaction
Ca + 2HCl ⇒ CaCl₂ + H₂
2.- Look for the atomic number of Calcium and hydrogen
Calcium = 40 g
Hydrogen = 1 x 2 = 2 g
3.- Use proportions to calculate the mass of calcium needed.
40 g of Calcium ---------------- 2 g of hydrogen
x ----------------- 8 g of hydrogen
x = (8 x 40) / 2
x = 320/2
x = 160 g of Calcium
The molar mass of a substance/chemical is the mass of the sample substance divided by the amount of substance in that sample.
Explanation:
- In order to calculate the atomic mass of a substance we first obtain the atomic weight of the substance from the periodic table.
- Then we count the number of atoms of the substance and multiply it with the individual atomic mass.
Molar mass of Citric Acid ( H3C6H5O7) is 192.1235 g/mol
It is calculated as :
Molar mass of C₆H₈O₇ = 6(atomic mass of C) + 8(atomic mass of H) + 7(atomic mass of O) = 6(12.0 g/mol) + 8(1.0 g/mol) + 7(16.0 g/mol) = 192.0 g/mol.
Molar mass of baking soda (NaHCO₃) is 84.0 g/mol
Molar mass of NaHCO₃ = (atomic mass of Na) + (atomic mass of H) + (atomic mass of C) + 3(atomic mass of O) = (23.0 g/mol) + (1.0 g/mol) + (12.0 g/mol) + 3(16.0 g/mol) = 84.0 g/mol.