Answer:
~1.417M
Explanation:
Molarity=(number of moles of solute)/(litres of solution)
In this case, we need to find moles of potassium bromide.
Mass=25.3g
Molar mass= 119g/mol
moles=(mass/molar mass)
=(25.3)/(119)
=0.2126moles of potassium bromide
Molarity=(0.2126)/(150/1000)
~1.417M
Hope this helps:)
The answer is: " 56 g CaCl₂ " .
__________________________________________________________
Explanation:
__________________________________________________________
2.0 M CaCl₂ = 2.0 mol CaCl₂ / L ;
Since: "M" = "Molarity" (measurement of concentration);
= moles of solute per L {"Liter"} of solution.
__________________________________________________________
Note the exact conversion: 1000 mL = 1 L .
Given: 250 mL ;
250 mL = ? L ? ;
250 mL * (1 L / 1000 L) = (250/1000) L = 0.25 L .
___________________________________________________________
(2.0 mol CaCl₂ / L ) * (0.25L) = (2.0) * (0.25) mol = 0.50 mol CaCl₂ ;
We have: 0.50 mol CaCl₂ ; Convert to "g" (grams):
→ 0.50 mol CaCl₂ .
___________________________________________________________
1 mol CaCl₂ = ? g ?
From the Periodic Table of Elements:
1 mol Ca = 40.08 g
1 mol Cl = <span>35.45 g .
</span>
There are 2 atoms of Cl in " CaCl₂ " ;
→ Note the subscript, "2", in the " Cl₂ " ;
__________________________________________________________
So, to calculate the molar mass of "CaCl₂" :
40.08 g + 2(35.45 g) =
40.08 g + 70.90 g = 110.98 g ; round to 4 significant figures;
→ round to 111 g/mol .
__________________________________________________________
So:
→ 0.50 mol CaCl₂ = ? g CaCl₂ ? ;
→ 0.50 mol CaCl₂ * (111 g CaCl₂ / mol CaCl₂) ;
= (0.50) * (111 g) CaCl₂ ;
= 55.5 g CaCl₂ ;
→ round to 2 significant figures;
→ 56 g CaCl₂ .
___________________________________________________________
The answer is: " 56 g CaCl₂ " .
___________________________________________________________
Answer:
So the answer would be 10 moles
Explanation:
1) Start with the molecular formula for water: 
2) If there are 10 moles of water use a mole ratio to calculate the moles of oxygen it would produce.
(This question is... interesting... since they chose an element that is diatomic in free state so It could TECHNICALLY be two answers, moles of O or moles of
)
The mole ratio is 1 moles of
to 1 moles of O. This is because the coefficient for oxygen in water is simple 1, so the ratio is 1:1.
3) that means if 10 moles of water decompose, they decompose into 10 moles of
and 10 moles of O.
Extra:
About what I was saying before about the question being slightly interesting:
10 moles of pure oxygen is produced but free state oxygen exists as
so it could possibly be 10 OR 5! However, notice it says elements. This leads me to believe the answer is 10 (monatomic oxygen) instead of 5 (free state/diatomic oxygen).
I hope this helps!
Answer:
Reaction 5: Decomposition reaction.
Reaction 6: Single replacement reaction
Reaction 7: Combination reaction.
Reaction 8: Combustion reaction.
Explanation:
<u><em>Reaction 5:</em></u> 2KClO₃ → 2KCl + 3O₂.
- It is a decomposition reaction.
- A decomposition reaction is a type of chemical reaction in which a single compound breaks down into two or more elements or new compounds.
- In this reaction: potassium chlorate decomposes into two single components (potassium chloride and oxygen).
- So, it is a decomposition reaction.
<u><em>Reaction 6:</em></u> Zn + 2HCl → H₂ + ZnCl₂.
- It is a single replacement reaction.
- A single-replacement reaction, a single-displacement reaction, is a reaction by which one (or more) element(s) replaces an/other element(s) in a compound.
- It is most often occur if element is more reactive than the other, thus giving a more stable product.
- In this reaction, zinc metal (more active) displaces the hydrogen to form hydrogen gas and zinc chloride, a salt. Zinc reacts quickly with the acid to form bubbles of hydrogen.
<u><em>Reaction 7:</em></u> N₂O₅ + H₂O → 2HNO₃.
- It is a combination "synthesis" reaction.
- A synthesis reaction has two or more reactants and only one product.
- In this reaction, dinitrogen pentoxide reacts with water to produce nitric acid.
- So, it is considered as a synthetic "combination" reaction.
<u><em>Reaction 8:</em></u> 2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O.
- It is a combustion reaction.
- A combustion reaction is a reaction where hydrocarbon alkane is completely burned in oxygen to produce water and carbon dioxide.
- In this reaction 1.0 mole of ethane is burned to give 4.0 moles of carbon dioxide and 6.0 moles of water.
- So, it is considered as a combustion reaction.
<span>Pentane has a boiling point of 36.1 C, while isopentane boils at 27.7C. Neopentane has the lowest boiling point at 9.5 C. Therefore from highest to lowest boiling points, it is pentane, isopentane, and neopentane.</span>