Answer:
q1 = q₂= -3
therefore each sphere has the same charge of -3 untis
Explanation:
The metallic spheres have mobile charge, so when the two spheres come into contact the total charge
Q_total = q₁ + q₂
Q_total = -2 -4
Q_total = -6 units
it is distributed in between the two spheres evenly since the charges of the same sign repel each other.
When the spheres separate each one has
q₁ = -6/2
q1 = q₂= -3
therefore each sphere has the same charge of -3 untis
Answer:
Option D
2 m/s
Explanation:
The speed is given by distance/time
The complete wave has a distance of 8 m (This is the wavelength)
Time taken for complete wave is 4 s
Therefore, velocity= 8 m/ 4 s= 2 m/s
The amplitude is the distance between crest and trough hence 9 m- 6 m= 3 m
Frequency is 1/period and in this case period is 4 s hence frequency= 1/4= 0.25 Hz
Essentially, what we wanted is velocity
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>