Turn your bright headlights on too
Answer:
The net electric field at the midpoint is 6.85 x 10^7 N/C.
Explanation:
q = − 8.3 μC
q' = + 7.8 μC
d = 9.2 cm
d/2 = 4.6 cm
The electric field due to the charge q at midpoint is
leftwards
The electric field due to the charge q' at midpoint is

The resultant electric field at mid point is
E'' = E + E' = (3.53 + 3.32) x 10^7 = 6.85 x 10^7 N/C
Answer:
Hope this helped :
Explanation:
When light passes from a medium with one index of refraction (m1) to another medium with a lower index of refraction (m2), it bends or refracts away from an imaginary line perpendicular to the surface (normal line). As the angle of the beam through m1 becomes greater with respect to the normal line, the refracted light through m2 bends further away from the line.
At one particular angle (critical angle), the refracted light will not go into m2, but instead will travel along the surface between the two media (sine [critical angle] = n2/n1 where n1 and n2 are the indices of refraction [n1 is greater than n2]). If the beam through m1 is greater than the critical angle, then the refracted beam will be reflected entirely back into m1 (total internal reflection), even though m2 may be transparent!
In physics, weight is a measure of the force exerted by gravity on a mass.
You probably know that you weigh less on the Moon than on Earth. For instance, if you weigh 100. pounds on Earth, you will weigh 16.6 pounds on the Moon. But, if your mass on Earth is 100 kg, your mass on the Moon is... also 100 kg. Because the amount of matter you have does not change from the Earth to the Moon, but the gravitational force on the Earth is stronger than on the Moon, so you weigh more on Earth.
You can think of gravity pulling a mass toward the center of an object like the Earth. It pulls a lot harder for more massive objects like the Earth than for the Moon. That's why there's a difference in weight.
As a caveat, adding energy or mass to an object will affect its mass. Additionally, general relativity informs us that when something as traveling very near the speed of light, the whole idea of mass equivalency is not exactly true...
Two factors influence the pressure of fluids. They are the depth of the fluid and its density.