Answer:
63.5 °C
Explanation:
The expression for the calculation of work done is shown below as:
Where, P is the pressure
is the change in volume
Also,
Considering the ideal gas equation as:-

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 8.314 J/ K mol
So,

Also, for change in volume at constant pressure, the above equation can be written as;-

So, putting in the expression of the work done, we get that:-
Given, initial temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.0 + 273.15) K = 301.15 K
W=1770 J
n = 6 moles
So,
Thus,


The temperature in Celsius = 336.63-273.15 °C = 63.5 °C
<u>The final temperature is:- 63.5 °C</u>
Answer:
The speed of the stone before it hit the river 3.00 sec later. Let v is the velocity at that instant is 45 m/s.
Explanation:
Given that, a child threw a stone straight down off a high bridge.
Initial velocity of the stone, u = 15 m/s
We need to find the speed of the stone before it hit the river 3.00 sec later. Let v is the velocity at that instant. When it come down, it is moving under the action of gravity. Using equation of motion as :

So, the speed of the stone before it hit the river 3.00 sec later. Let v is the velocity at that instant is 45 m/s.
Answer:
Book of mass 2 kg is lifted from floor to the table. The height between floor and the table is 1.5 m. Calculate the work done by gravitational force.
Yes because there is more temperature to cover in terms of hot water turning into cold and then solid water, and therefore hot water cools down faster, whereas cold water will take more time to become solid.
Calcium chloride contains ionic bonds.
Pennies contain metallic bonds.
Hydrochloric acid contains covalent bonds.
You're welcome.