Answer:
The answers are in the explanation
Explanation:
A buffer is the mixture of a weak acid with its conjugate base or vice versa. Thus:
<em>1)</em> Mixing 100.0 mL of 0.1 M HF with 100.0 mL of 0.05 M mol KF. <em>Will </em>result in a buffer because HF is a weak acid and KF is its conjugate base.
<em>2)</em> Mixing 100.0 mL of 0.1 M NH₃ with 100.0 mL of 0.1 M NH₄Br. <em>Will not </em>result in a buffer because NH₃ is a strong base.
<em>3) </em>Mixing 100.0 mL of 0.1 M HCN with 100.0 mL of 0.05 M KOH. <em>Will </em>result in a buffer because HCN is a weak acid and its reaction with KOH will produce CN⁻ that is its conjugate base.
<em>4)</em> Mixing 100.0 mL of 0.1 M HCl with 100.0 mL of 0.1 M KCl <em>Will not </em>result in a buffer because HCl is a strong acid.
<em>5)</em> Mixing 100.0 mL of 0.1 M HCN with 100.0 mL of 0.1 M KOH <em>Will not </em>result in a buffer because each HCN will react with KOH producing CN⁻, that means that you will have just CN⁻ (Conjugate base) without HCN (Weak acid).
I hope it helps!
Answer is: 4) The same subscripts are on each side of the equation.
For example, balanced chemical reaction:
2Mg + O₂ → 2MgO.
1) The same number of atoms is on each side of the equation: two magnesium atoms and two oxgen atoms.
2) The formulas for all substances are correct: in magnesium oxide (MgO), magnesium has oxidation number +2 and oxygen -2, so formula is good, because compound must be neutral.
3) The same mass is represented on each side of the equation: because there is same number of atoms, the mass is the same.
4) The same subscripts are on each side of the equation: oxygen does not have same subscripts.
Answer:
hope this will help you......
Answer:
Explanation:
We use the method of titration
A titration involves finding the unknown concentration of one solution by reacting it with a solution of known concentration. The solution of unknown concentration (the analyte) is usually placed in an Erlenmeyer flask, while the solution of known concentration (titrant) is placed in a burette. The titrant is added to the analyte until the endpoint is reached usually determined by a color change. Calculations are then performed to find the unknown concentration of the analyte. Titrations are typically performed on acid/base reactions but are not limited to them.
Macid x Vacid = Mbase x Vbase
Macid = Molarity of the acid
Vacid = Volume of the acid
Mbase = Molarity of the base
Vbase = Volume of the base
If the titrant and analyte have a 1:1 mole ratio, the equation above can be used to determine the unknown concentration, if the ratio is not 1:1 then a modified version should be used
I hope you find this helpful.