The frequency of the waves must decrease when the musician increases the wavelength without changing their speed. Your welcome
Answer:
D - chemical and physical
Explanation:
Only chemical and physical changes can reach the level of dynamic equilibrium. Nuclear reactions cannot reach dynamic equilibrium.
- A system is in dynamic equilibrium when the rate of forward reaction is the same as that of backward reaction in a reversible reaction.
- Nuclear reactions cannot be reversed.
- Dynamic equilibrium is prominent in chemical reactions. It is commonly found that as a reaction occurs, the backward and forward reactions can reach equilibrium levels.
- In physical changes, this can also occur when certain conditions of pressure and temperatures are satisfied.
Answer:
It is in violation of the Heisenberg Uncertainty Principle. The Bohr Model considers electrons to have both a known radius and orbit, which is impossible according to Heisenberg. ... The Bohr Model does not account for the fact that accelerating electrons do not emit electromagnetic radiation
Explanation:
The given data is as follows.
= 286 kJ = 
= 286000 J
,

Hence, formula to calculate entropy change of the reaction is as follows.

= ![[(\frac{1}{2} \times S_{O_{2}}) - (1 \times S_{H_{2}})] - [1 \times S_{H_{2}O}]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20S_%7BO_%7B2%7D%7D%29%20-%20%281%20%5Ctimes%20S_%7BH_%7B2%7D%7D%29%5D%20-%20%5B1%20%5Ctimes%20S_%7BH_%7B2%7DO%7D%5D)
= ![[(\frac{1}{2} \times 205) + (1 \times 131)] - [(1 \times 70)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20205%29%20%2B%20%281%20%5Ctimes%20131%29%5D%20-%20%5B%281%20%5Ctimes%2070%29%5D)
= 163.5 J/K
Therefore, formula to calculate electric work energy required is as follows.
= 
= 237.277 kJ
Thus, we can conclude that the electrical work required for given situation is 237.277 kJ.
Answer:
Q = 1461.6 J
Explanation:
Given data:
Mass of ice = 36 g
Initial temperature = -20°C
Final temperature = 0°C
Amount of heat absorbed = ?
Solution:
specific heat capacity of ice is 2.03 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 0°C - (-20°C)
ΔT = 20°C
Q = 36 g ×2.03 j/g.°C×20°C
Q = 1461.6 J