2KClO3 --> 2KClO2 + O2
12 6 (moles)
The ratio of KClO3 and O2 is 2:1. This means 2 moles of KClO3 can create 1 mole of O2. So 12 moles of KClO3 will create 6 moles of O2.
pH of 0.048 M HClO is 4.35.
<u>Explanation:</u>
HClO is a weak acid and it is dissociated as,
HClO ⇄ H⁺ + ClO⁻
We can write the equilibrium expression as,
Ka = ![$\frac{[H^{+}] [ClO^{-}] }{[HClO]}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BClO%5E%7B-%7D%5D%20%20%7D%7B%5BHClO%5D%7D)
Ka = 4.0 × 10⁻⁸ M
4.0 × 10⁻⁸ M = 
Now we can find x by rewriting the equation as,
x² = 4.0 × 10⁻⁸ × 0.048
= 1.92 × 10⁻⁹
Taking sqrt on both sides, we will get,
x = [H⁺] = 4.38 × 10⁻⁵
pH = -log₁₀[H⁺]
= - log₁₀[ 4.38 × 10⁻⁵]
= 4.35
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
<span>The particles are far apart from each other.</span>
The six metalloids are boron, silicon, germanium, arsenic, antimony, and tellerium.