(a)
Substitute <em>x</em> = 3 tan(<em>t</em> ) and d<em>x</em> = 3 sec²(<em>t </em>) d<em>t</em> :
(b) The series
converges by comparison to the convergent <em>p</em>-series,
(c) The series
converges absolutely, since
That is, ∑ (-1)ⁿ (<em>n</em> ² + 9)/<em>e</em>ⁿ converges absolutely because ∑ |(-1)ⁿ (<em>n</em> ² + 9)/<em>e</em>ⁿ| = ∑ (<em>n</em> ² + 9)/<em>e</em>ⁿ in turn converges by comparison to a geometric series.
Answer:
125
Step-by-step explanation:
x(t) = x0 × (1 + r) t
where:
x(t) = the amount of some quantity at time t
x0 = initial amount at time t = 22
r = the growth rate
t = time