Answer:
2.4 × 10⁻⁴ M
Explanation:
Step 1: Calculate the concentration of Mg²⁺ coming from Mg(NO₃)₂
Mg(NO₃)₂ is a strong electrolyte and the molar ratio of Mg(NO₃)₂ to Mg²⁺ is 1:1. The initial molar concentration of Mg²⁺ is 1/1 × 0.36 M = 0.36 M.
Step 2: Make an ICE chart for the solution of MgF₂
MgF₂(s) ⇄ Mg²⁺(aq) + 2 F⁻(aq)
I 0.36 0
C +S +2S
E 0.36+S 2S
The solubility product constant is:
Ksp = [Mg²⁺] × [F⁻]² = (0.36+S) × (2S)²
Since S <<< 0.36, 0.36+S ≈ 0.36.
Ksp = 0.36 × 4S² = 8.4 × 10⁻⁸
S = 2.4 × 10⁻⁴ M
6000 I pretty sure tell me if it's right
Answer:C, atoms must balance positive and negative particles.
Explanation: Got it correct on edgenuity.
Answer:
Explanation:
Electron affinity is the energy released in adding an electron to a neutral atom in the gas phase.
It is a measure of the readiness of an atom to gain an electron. This property is very peculiar to non-metals. The higher the value, the greater the tendency to accept electrons.
Across a period electron affinity increases due to the increasing nuclear charge not being compensated for.
Down a group, electron affinity decreases due to the low nuclear charge and the large atomic radii.
The exception to this rule is the stability of half-filled sublevels. For example, nitrogen has a configuration of 2,5 with sublevel notation of 1s²2s²2p³.
The p-sublevel has a degeneracy of three and the three electrons goes in singly. This makes the configuration stable.
We expect such an atom to have a higher electron affinity but its configuration is stable and carbon would have a higher affinity than it across the same period.
Half filled sublevels are exception to the trend of electron affinity.