Answer:
B. You would weigh the same on both planets because their masses and the distance to their centers of gravity are the same.
Explanation:
Given that Planets A and B have the same size, mass.
Let the masses of the planets A and B are
and
respectively.
As masses are equal, so
.
Similarly, let the radii of the planets A and B are
and
respectively.
As radii are equal, so
.
Let my mass is m.
As the weight of any object on the planet is equal to the gravitational force exerted by the planet on the object.
So, my weight on planet A, 
my weight of planet B, 
By using equations (i) and (ii),
.
So, the weight on both planets is the same because their masses and the distance to their centers of gravity are the same.
Hence, option (B) is correct.
Earth's atmosphere is made up of a combination of gases. The major components of nitrogen, oxygen, and argon remain constant over time and space, while trace components like CO2 and water vapor vary considerably over both space and time.
Answer:
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency.
Explanation:
In order to answer this question, I realized that I needed to know the index
of refraction for ruby, so I went and looked it up. It's 1.762 to 1.770 .
I started trying to remember how to use this number and the critical angle
to find the index of refraction of the other medium. That's when I saw the
absurd unit "degrees celsius" for the critical angle, and I got discouraged.
But I perked up very quickly, when I realized that I'm still on the "index of
refraction" list, and while I'm there, I might as well just go ahead and
look up ethyl alcohol too.
It's 1.36 .