Answer:
-6.44 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 27.8 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (27.8 m/s)² + 2a (60 m)
a = -6.44 m/s²
Answer:
According to the travellers, Alpha Centauri is <em>c) very slightly less than 4 light-years</em>
<em></em>
Explanation:
For a stationary observer, Alpha Centauri is 4 light-years away but for an observer who is travelling close to the speed of light, Alpha Centauri is <em>very slightly less than 4 light-years. </em>The following expression explains why:
v = d / t
where
- v is the speed of the spaceship
- d is the distance
- t is the time
Therefore,
d = v × t
d = (0.999 c)(4 light-years)
d = 3.996 light-years
This distance is<em> very slightly less than 4 light-years. </em>
Answer:
3.7 km/h
Explanation:
Let's call v the proper speed of the boat and v' the speed of the water in the river.
When the boat travels in the direction of the current, the speed of the boat is:
v + v'
And it covers 50 km in 3 h, so we can write
(1)
When the boat travels in the opposite direction, the speed of the boat is
v - v'
And it covers 50 km in 5.4 h, so
(2)
So we have a system of two equations: by solving them simultaneously, we find the value of v and v':
Subtracting the second equation from the first one we get:
So, the speed of the water is 3.7 km/h.
Answer:
0.75 g/cm^3
Explanation:
The formula for density:
Where m is the mass and V is the volume.
So, we can substitute values for m and V:
Therefore, the density is 0.75 g/cm^3 (watch the units!)
Answer:
B) Power
Explanation:
The power is defined by the following equation:
P = W / t
where:
W = work = Force * Distance = [Newton] * [meter]
t = time = seconds
The units for work are give en Newton per second, which is equal to Joules
And for power the unit used commonly is Watts, therefore:
Watts = (Joule/second)