Question:<em> </em><em>Find, separately, them mass of the balloon and the basket (incidentally, most of the balloon's mass is air)</em>
Answer:
The mass of the balloon is 2295 kg, and the mass of the basket is 301 kg.
Explanation:
Let us call the mass of the balloon and the mass of the basket , then according to newton's second law:
,
where is the upward acceleration, and is the net propelling force (counts the gravitational force).
Also, the tension in the rope is 79.8 N more than the basket's weight; therefore,
and this tension must equal
Combining equations (2) and (3) we get:
since , we have
Putting this into equation (1) and substituting the numerical values of and , we get:
Thus, the mass of the balloon and the basket is 2295 kg and 301 kg respectively.
Answer:
Black Hole
Explanation:
A black hole is a very dense and massive stellar object, which has a field of gravity so large that not even light can escape it.
Since it does not emit light, <u>we cannot see them directly</u>, hence the name of black hole.
So in this case,<u> if the object has a mass of 8 solar masses that is enough to form a black hole</u>, and <u>also cannot be seen</u>, all of this indicates that the object we are talking about is a black hole.
It should be mentioned that although these objects do not emit light, because it cannot escape due to the immense force of gravity, black holes can be detected by a type of radiation emitted on their event horizon due to quantum effects called Hawking radiation .
Answer:
A
Explanation:
Iron and gadlinium are both very easily made into magnetic substances. Cobalt is also capable of being magnetized. Aluminum, put in an alloy, can make a magnetic substance, but
Aluminum by itself is not able to be magnetized.
Answer:
(a) the mechanical energy of the system, U = 0.1078 J
(b) the maximum speed of the object, Vmax = 0.657 m/s
(c) the maximum acceleration of the object, a_max = 15.4 m/s²
Explanation:
Given;
Amplitude of the spring, A = 2.8 cm = 0.028 m
Spring constant, K = 275 N/m
Mass of object, m = 0.5 kg
(a) the mechanical energy of the system
This is the potential energy of the system, U = ¹/₂KA²
U = ¹/₂ (275)(0.028)²
U = 0.1078 J
(b) the maximum speed of the object
(c) the maximum acceleration of the object
Answer:
Rotational kinetic energy = 0.099 J
Translational kinetic energy = 200 J
The moment of inertia of a solid sphere is .
Explanation:
Rotational kinetic energy is given by
where <em>I</em> is the moment of inertia and <em>ω</em> is the angular speed.
For a solid sphere,
where <em>m</em> is its mass and <em>r</em> is its radius.
From the question,
<em>ω</em> = 49 rad/s
<em>m</em> = 0.15 kg
<em>r</em> = 3.7 cm = 0.037 m
Translational kinetic energy is given by
where <em>v</em> is the linear speed.